AN ADDITIVE BASIS FOR THE COHOMOLOGY RINGS OF REGULAR NILPOTENT HESSENBERG VARIETIES
نویسندگان
چکیده
In this paper we construct an additive basis for the cohomology ring of a regular nilpotent Hessenberg variety which is obtained by extending all Poincaré duals smaller subvarieties. particular, subvarieties are linearly independent.
منابع مشابه
Decomposing Nilpotent Hessenberg Varieties over Classical Groups
Hessenberg varieties are a family of subvarieties of the flag variety, including the Springer fibers, the Peterson variety, and the entire flag variety itself. The seminal example arises from numerical analysis and consists, for a fixed linear operator M , of the full flags V1 ( V2 . . . ( Vn in GLn with MVi ⊆ Vi+1 for all i. In this paper, I show that all nilpotent Hessenberg varieties in type...
متن کاملA Hessenberg Generalization of the Garsia-Procesi Basis for the Cohomology Ring of Springer Varieties
The Springer variety is the set of flags stabilized by a nilpotent operator. In 1976, T.A. Springer observed that this variety’s cohomology ring carries a symmetric group action, and he offered a deep geometric construction of this action. Sixteen years later, Garsia and Procesi made Springer’s work more transparent and accessible by presenting the cohomology ring as a graded quotient of a poly...
متن کاملUnit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties
Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian and Wachs conjectured that the characteristic map takes the dot action of the symmetric group on the cohomology of a regular semisimple Hessenberg variety to ωXG(t), where XG(t) is the chromatic quasisymmetric function of the incomparability graph G of the corresponding natural unit interval order, and ω is the usual involutio...
متن کامل5 Some additive galois cohomology rings
Let p ≥ 3 be a prime. We consider the cyclotomic extension Z (p) [ζ p 2 ] | Z (p) , with galois group G = (Z/p 2) *. Since this extension is wildly ramified, the Z (p) G-module Z (p) [ζ p 2 ] is not projective. We calculate its cohomology ring H * (G, Z (p) [ζ p 2 ]; Z (p)), carrying the cup product induced by the ring structure of Z (p) [ζ p 2 ]. Formulated in a somewhat greater generality, ou...
متن کاملSome cyclotomic additive Galois cohomology rings
Let p ≥ 3 be a prime. We consider the cyclotomic extension Z(p)[ζp2] of Z(p), with Galois group G := (Z/p2)∗. Since this extension is wildly ramified, Z(p)[ζp2] is not projective as a module over the group ring Z(p)G (Speiser). Extending this module structure, we can regard Z(p)[ζp2 ] as a module over the twisted group ring Z(p)[ζp2] ≀G; as such, it remains faithful and non projective. We calcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2022
ISSN: ['1531-586X', '1083-4362']
DOI: https://doi.org/10.1007/s00031-022-09763-3